PCB設計布線(Layout)的好壞將直接影響到整個系統(tǒng)的性能,大多數(shù)高速的設計理論也要最終經過 Layout 得以實現(xiàn)并驗證,由此可見,布線在高速 PCB 設計中是至關重要的。下面將針對實際布線中可能遇到的一些情況,分析其合理性,并給出一些比較優(yōu)化的走線策略。
主要從直角走線,差分走線,蛇形線等三個方面來闡述。
1. 直角走線
直角走線一般是PCB布線中要求盡量避免的情況,也幾乎成為衡量布線好壞的標準之一,那么直角走線究竟會對信號傳輸產生多大的影響呢?從原理上說,直角走線會使傳輸線的線寬發(fā)生變化,造成阻抗的不連續(xù)。其實不光是直角走線,頓角,銳角走線都可能會造成阻抗變化的情況。
直角走線的對信號的影響就是主要體現(xiàn)在三個方面:
一是拐角可以等效為傳輸線上的容性負載,減緩上升時間;
二是阻抗不連續(xù)會造成信號的反射;
三是直角尖端產生的EMI。
傳輸線的直角帶來的寄生電容可以由下面這個經驗公式來計算:
C=61W(Er)1/2/Z0
在上式中,C 就是指拐角的等效電容(單位:pF),W指走線的寬度(單位:inch),εr指介質的介電常數(shù),Z0就是傳輸線的特征阻抗。舉個例子,對于一個4Mils的50歐姆傳輸線(εr為4.3)來說,一個直角帶來的電容量大概為0.0101pF,進而可以估算由此引起的上升時間變化量:
T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps
通過計算可以看出,直角走線帶來的電容效應是極其微小的。
由于直角走線的線寬增加,該處的阻抗將減小,于是會產生一定的信號反射現(xiàn)象,我們可以根據(jù)傳輸線章節(jié)中提到的阻抗計算公式來算出線寬增加后的等效阻抗,然后根據(jù)經驗公式計算反射系數(shù):
ρ=(Zs-Z0)/(Zs+Z0)
一般直角走線導致的阻抗變化在7%-20%之間,因而反射系數(shù)最大為0.1左右。而且,從下圖可以看到,在W/2線長的時間內傳輸線阻抗變化到最小,再經過W/2時間又恢復到正常的阻抗,整個發(fā)生阻抗變化的時間極短,往往在10ps 之內,這樣快而且微小的變化對一般的信號傳輸來說幾乎是可以忽略的。
很多人對直角走線都有這樣的理解,認為尖端容易發(fā)射或接收電磁波,產生 EMI,這也成為許多人認為不能直角走線的理由之一。然而很多實際測試的結果顯示,直角走線并不會比直線產生很明顯的 EMI。也許目前的儀器性能,測試水平制約了測試的精確性,但至少說明了一個問題,直角走線的輻射已經小于儀器本身的測量誤差。
總的說來,直角走線并不是想象中的那么可怕。至少在GHz以下的應用中,其產生的任何諸如電容,反射,EMI等效應在TDR測試中幾乎體現(xiàn)不出來,高速PCB設計工程師的重點還是應該放在布局,電源/地設計,走線設計,過孔等其他方面。當然,盡管直角走線帶來的影響不是很嚴重,但并不是說我們以后都可以走直角線,注意細節(jié)是每個優(yōu)秀工程師必備的基本素質,而且,隨著數(shù)字電路的飛速發(fā)展,PCB 工程師處理的信號頻率也會不斷提高,到 10GHz 以上的 RF 設計領域,這些小小的直角都可能成為高速問題的重點對象。
(責任編輯:柯博文 HT006)
【本文標簽】: 多層 pcb 多層PCB面板 沉金板 公司設備
【責任編輯】:鼎紀電子PCB??? 版權所有:http://ai-hots.com/轉載請注明出處
1《探索創(chuàng)新:12 層樹脂塞孔 HDI 四階 PCB 線路板打
8揭秘創(chuàng)新科技背后:多層板PCB的先進制造技術