2.2 助力特性曲線設計
EPS助力特性是駕駛員輸入轉(zhuǎn)矩和電機助力力矩(助力電流)之間的關系。汽車在行駛過程中,轉(zhuǎn)向阻力隨著車速的增加而降低。為了獲得汽車低速行駛時 轉(zhuǎn)向的輕便性和高速行駛時的穩(wěn)定性,在同種行駛狀況下,電機助力力矩隨著車速的升高而減小,并在車速超出一定范圍時,電機不進行助力。常見的助力特性曲線 有3種:直線型、折線型和曲線型。直線型助力特性曲線形式簡單,實際中容易調(diào)節(jié)和實現(xiàn)。因此,文中采用直線型助力特性進行控制器設計。
2.3 控制算法
EPS系統(tǒng)控制是對電機電流大小和方向的控制。其控制算法的好壞直接影響著轉(zhuǎn)向系統(tǒng)的性能。本文采用目前廣泛應用于工業(yè)控制領域的PID控制算法。 PID控制穩(wěn)定性和可靠性高、實時性強、且控制與調(diào)試方法簡單,易于實現(xiàn),適合用于汽車電動助力轉(zhuǎn)向系統(tǒng)的控制。因此,PID控制是現(xiàn)階段EPS控制系統(tǒng) 主要的控制策略。
3、硬件設計
3.1 總體設計
單片機是控制器的核心,其選型需要考慮適用性、可靠性、片內(nèi)資源、價格等多種因素。單片機選型恰當與否直接影響機構(gòu)控制系統(tǒng)的性能及設計難易程度 度。本設計采用Freescale公司的16位高精度MC9S12DP256單片機。MC9S12DP256內(nèi)置5個CAN模塊、2個8通道10位A/D 轉(zhuǎn)換模塊、8個PWM通道,總線速度25 MHz,采用5 V供電,112腳LQFP封裝。此單片機,內(nèi)部資源豐富,可大大簡化控制系統(tǒng)硬件電路,其可靠性高,非常適用于EPS控制。設計中沒有用到的管腳引到電路 板上,以便于后續(xù)開發(fā)。
硬件設計如圖3所示。車速、發(fā)動機、轉(zhuǎn)矩信號經(jīng)處理后送給MC9S12DP256單片機,經(jīng)單片機計算后,得到電機助力電流值,經(jīng)驅(qū)動電路后作用于 助力電機,控制電機輸出力矩的大小和方向,同時對電機電流進行采樣,并送回單片機,形成閉環(huán)控制。在助力控制基礎上,設計了電機保護電路和故障診斷與提示 電路。一旦檢測到故障存在,立即斷開離合器,改用純手動轉(zhuǎn)向,并發(fā)出故障信號,從而保證了行車安全。
3.2 控制系統(tǒng)硬件電路設計
硬件電路設計主要包括電源轉(zhuǎn)換電路、扭矩信號處理電路、車速信號處理電路、CAN通信電路、時鐘電路。具體設計如下:
電源轉(zhuǎn)換由于單片機工作時管腳電壓為+5 V供電,而車載電源電壓為+12 V。因此,需要對+12 V電壓進行轉(zhuǎn)換,變成+5 V。本設計中采用7805電壓轉(zhuǎn)換芯片進行電壓變換。
扭矩信號處理由于扭轉(zhuǎn)傳感器獲得的是一些微弱的小信號,容易受干擾,因此需要對其進行濾波處理。本設計采用型濾波電路,R12取大電阻,提高輸入阻抗。
車速處理電路車速信號為+12 V單極性方波,電壓太高,不能直接用于單片機,需要將其變換為+5 V以內(nèi)的方波。利用LM358對其進行處理,經(jīng)轉(zhuǎn)換后得到高電平為3.72 V,低電平為0.01V的方波信號。
CAN總線驅(qū)動電路MC9S12DP256內(nèi)部集成了CAN總線控制器,CAN驅(qū)動電路只需要物理層驅(qū)動即可。本設計選用82C250芯片進行設計。
時鐘電路時鐘是單片機工作的基礎。MC9S12DP256單片機內(nèi)部集成了壓控振蕩器,可在其43、44和46、47引腳分別接上鎖相環(huán)電路和16MHz的晶振電路。組成MC9S12DP256時鐘電路,提供25MHz的時鐘信號。
【本文標簽】: 多層 pcb 多層PCB面板 沉金板 公司設備
【責任編輯】:鼎紀電子PCB??? 版權所有:http://ai-hots.com/轉(zhuǎn)載請注明出處
1《探索創(chuàng)新:12 層樹脂塞孔 HDI 四階 PCB 線路板打
8揭秘創(chuàng)新科技背后:多層板PCB的先進制造技術
掃一掃更精彩!
2001-2018 深圳鼎紀電子有限公司 版權所有
粵ICP備16081348號
全國服務熱線:0755-27586790
24小時銷售熱線:18025855806|18682125228
地址:深圳市寶安區(qū)西鄉(xiāng)黃崗嶺工業(yè)區(qū)灣區(qū)人工智能產(chǎn)業(yè)園B棟605
深圳鼎紀電子有限公司:單面PCB板